There are sequential spaces, these are topological spaces such that a set $A$ is closed if $A$ is sequentially closed, meaning $A$ contains the limits of all sequences in $A$. One can say that a sequential space has the final topology with respect to all continuous maps from $\hat{\Bbb N}$, the one-point-compactification of $\Bbb N$, to $X$.
It's not difficult to show that $X$ is sequential if and only if every sequentially continuous function $f:X\to Y$ is continuous.
A less general class of spaces is the so-called Frechet-Urysohn spaces (FU). A space is FU if a limit point $x$ of $A$ is always the limit of some sequence within $A$. These spaces include the first-countable spaces.
If $X$ is FU and $f:X\to Y$ is pseudo-open, then $Y$ is FU, too. Since every closed surjection is pseudo-open, the FU property carries over to quotients of $X$ by a closed subspace $A$. For example, $\Bbb R/\Bbb Z$ is FU. Note that this space is not first-countable (at $\Bbb Z$).