$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}&\color{#c00000}{\int_{0}^{\infty}
{\arctan\pars{ax} \over x\pars{1+x^{2}}}\,\dd x}
=\half\,a\verts{a}\int_{-\infty}^{\infty}
{\arctan\pars{x} \over x\pars{x^{2} + a^{2}}}\,\dd x
\\[3mm]&=\half\,a\verts{a}\int_{-\infty}^{\infty}\
\overbrace{{\ic \over 2}\,\ln\pars{1 - \ic x \over 1 + \ic x}}
^{\ds{=\ \arctan\pars{x}}}\
{1\over x\pars{x^{2} + a^{2}}}\,\dd x
=-\,\half\,a\verts{a}\,\Im\int_{-\infty}^{\infty}
{\ln\pars{1 - \ic x} \over x\pars{x^{2} + a^{2}}}\,\dd x
\end{align}
Set $\ds{t \equiv 1 - \ic x\quad\imp\quad x = \pars{t - 1}\ic}$:
\begin{align}&\color{#c00000}{\int_{0}^{\infty}
{\arctan\pars{ax} \over x\pars{1+x^{2}}}\,\dd x}
=-\,\half\,a\verts{a}\,\Im\int_{1 + \infty\ic}^{1 - \infty\ic}
{\ln\pars{t} \over \pars{t - 1}\ic\bracks{-\pars{t - 1}^{2} + a^{2}}}\,\ic\,\dd t
\\[3mm]&=-\,\half\,a\verts{a}\,\Im\color{#00f}{%
\int_{1 - \infty\ic}^{1 + \infty\ic}{\ln\pars{t}\over
\pars{t - 1}\pars{t - r_{-}}\pars{t - r_{+}}}\,\dd t}
\quad \mbox{where}\quad r_{\pm} = 1 \pm \verts{a}
\end{align}
Now, we'll evaluate the $\ds{\color{#00f}{\mbox{'blue integral'}}}$.
We take the "$\ds{\ln}$-branch cut" along the negative $\ds{t}$-semi-axis and close the contour in a semi-circle "to the right" $\ds{\pars{~t > 1~}}$:
\begin{align}&\color{#c00000}{\int_{0}^{\infty}
{\arctan\pars{ax} \over x\pars{1+x^{2}}}\,\dd x}
=-\,\half\,a\verts{a}\,\Im\bracks{-2\pi\ic\,
{\ln\pars{r_{+}} + \ic 0 \over \pars{r_{+} - 1}\pars{r_{+} - r_{-}}}}
\\[3mm]&=\pi\,a\verts{a}\,\bracks{%
{\ln\pars{1 + \verts{a}} \over \verts{a}\pars{2\verts{a}}}}
\end{align}
$$
\color{#66f}{\large\int_{0}^{\infty}
{\arctan\pars{ax} \over x\pars{1+x^{2}}}\,\dd x
={\pi \over 2}\,\sgn\pars{a}\ln\pars{1 + \verts{a}}}
$$