Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a differentiable function with continuous derivative and the limit $\displaystyle{\lim_{x \rightarrow +\infty} f(x) }$ exists. Show with an example that it is possible that the limit $\displaystyle{\lim_{x \rightarrow +\infty} f'(x)} $ does not exist.
My attempt:
$$f(x)=\int_{-\infty}^{x} e^{t^2}dt$$
$$\lim_{x \to +\infty} f(x)=\lim_{x \to +\infty} \int_{-\infty}^{+\infty} e^{t^2}dt=\frac{\sqrt{\pi}}{2}$$
$$\lim_{x \to +\infty} f'(x) =\lim_{x \to +\infty} e^{x^2}= +\infty \notin \mathbb{R}$$
Is my attempt right?