Evaluation of Integral $\displaystyle \int \sqrt{\sin x}\; dx$
$\bf{My\; Try::}$ Let $\sin x = y^2\;, $ Then $\displaystyle \cos xdx =2ydy\Rightarrow dx = \frac{2y}{\sqrt{1-y^4}}dy$
So $\displaystyle \int \sqrt{\sin x}\;dx = 2\int \frac{y^2}{\sqrt{1-y^4}}dy = 2\int y^2\cdot \left(1-y^4\right)^{-\frac{1}{2}}dy$
(Using Wolframalpha It Show The Results is in the form of Elleptical Integral of first and Second Kind.)
Now How Can I solve after that
Help Required
Thanks
\begin{align} & Equation \\ & II Equation \end{align}
. This looks much better. :) – Kushashwa Ravi Shrimali Jun 29 '14 at 06:29