How can i prove that there exist some real $a >0$ such that $\tan{a} = a$ ?
I tried compute $$\lim_{x\to\frac{\pi}{2}^{+}}\tan x=\lim_{x\to\frac{\pi}{2}^{+}}\frac{\sin x}{\cos x}$$
We have the situation " $\frac{1}{0}$ " which leads us " $\infty$ "
$$\lim_{x\to\frac{\pi}{2}^{-}}\tan x=\lim_{x\to\frac{\pi}{2}^{-}}\frac{\sin x}{\cos x}$$
We have the situation " - $\frac{1}{0}$" which tells us " $- \infty$"
This means for any real number $y$ there exists $x_1$ and $x_2$ in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ such that
$f(x_1)<y<f(x_2)$.
Remember the Intermediate Value Theorem. If f is a continuous function and $f(a)<0<f(b)$ then there exist $x \in (a,b)$ such that $f(x) = 0$
So $f(x_1)<y<f(x_2)$ is equivalent to
f(x1) - y < 0 < f(x2) - y (I just subtracted y from each part)
Now we can use the Intermediate Value Theorem (applied to $(f - y)$ to say there exists an $x \in (x_1 , x_2)$ such that $f(x) - y = 0 $
or $f(x) = y$ or $\tan x = y$
We know $x_1 < x < x_2$ and $-\frac{\pi}{2}<x_1<x_2<\frac{\pi}{2}$
So we know that $-\frac{\pi}{2}<x<\frac{\pi}{2}$, then $f(x) - y = 0$.
But how can i prove it for $a >0$ such that $\tan{a} = a$ ?