Finding the value of the limit
Let
$ x_{n} $ =$ \sqrt{1+\sqrt{2+\sqrt{3+....+\sqrt{n}}}}$
then
$\lim_{n\to\infty}x_{n}=$?
Finding the value of the limit
Let
$ x_{n} $ =$ \sqrt{1+\sqrt{2+\sqrt{3+....+\sqrt{n}}}}$
then
$\lim_{n\to\infty}x_{n}=$?