Here is a very silly question:
Adjoint functors satisfy
$$\mathrm{hom}_{\mathcal{C}}(FA,B) \cong \mathrm{hom}_{\mathcal{D}}(A,GB).$$
I consider numbers $a,b$ and read this as
$$b^{\,f(a)}=g(b)^a.$$
If the objects in the categories can be assigned cardinalities, do the functors actually fulfill a relation along those lines?
$\bf Edit$: If e.g. $|B^{FA}|=|B|^{|FA|}$ does make sense, just taking the cardinalities of the hom-sets tells us
$$\frac{|FA|}{|A|}=\log_{|B|}|GB|.$$
E.g. in a category with object being sets, the adjoint functors $FA:=A\times I$ and $GB:=B^I$ have
$\frac{|FA|}{|A|}=\frac{|A\times I|}{|A|}=|I|\ \ \ $ and $\ \ \ \log_{|B|}|GB|=\log_{|B|}|B^I|=|I|$.