The coefficients in the Laurent series are given by
$$
a_n = \frac{1}{2\pi i} \int_\gamma \frac{f(z)}{(z-c)^{n+1}}\,dz
$$
where $c$ is the center of expansion, and $\gamma$ is a simple closed curve in the annulus of convergence. You can use the residue theorem to compute the relevant integrals:
\begin{align}
a_{-1} &= \frac{1}{2\pi i} \int_\gamma \frac{1}{e^z - 1}\,dz \\
&= \newcommand{\res}{\operatorname{Res}\limits}
\res_{z=0}\Big(\frac{1}{e^z-1}\Big)+
\res_{z=2\pi i}\Big(\frac{1}{e^z-1}\Big)+
\res_{z=-2\pi i}\Big(\frac{1}{e^z-1}\Big) \\
&= 1 + 1 + 1 = 3.
\end{align}
Similarly,
\begin{align}
a_{0} &= \frac{1}{2\pi i} \int_\gamma \frac{1}{z(e^z - 1)}\,dz \\
&=
\res_{z=0}\Big(\frac{1}{z(e^z-1)}\Big)+
\res_{z=2\pi i}\Big(\frac{1}{z(e^z-1)}\Big)+
\res_{z=-2\pi i}\Big(\frac{1}{z(e^z-1)}\Big) \\
&= -\frac12 - \frac{i}{2\pi} + \frac{i}{2\pi} = -\frac12.
\end{align}
I'll leave the $a_1$ to you.