I want to show that if $E\subset \mathbb{R}^n$ is a Lebesgue measurable set where $\lambda(E)>0$, then $E-E=\{x-y:x,y\in E\}\supseteq\{z\in\mathbb{R}^n:|z|<\delta\}$ for some $\delta>0$, where $|z|=\sqrt{\sum_{i=1}^n z_i^2}$.
My approach is this. Take some $J$, a box in $\mathbb{R}^n$ with equal side lengths such that $\lambda(E\cap J)>3\lambda(J)/4$. Setting $\epsilon=3\lambda(J)/2$, take $x\in\mathbb{R}^n$ such that $|x|\leq\epsilon$. Then $E\cap J\subseteq J$ and $$((E\cap J)+x)\cup(E\cap J)\subseteq J\cup(J+x).$$
Since Lebesgue measure is translation invariant, it follows that $\lambda((E\cap J)+x)=\lambda(E\cap J)$, and so $((E\cap J)+x)\cap(E\cap J)\neq\emptyset$.
If it were empty, then $$2\lambda(E\cap J)=\lambda(((E\cap J)+x)\cup(E\cap J))\leq\lambda(J\cup(J+x))\leq 3\lambda(J)/2,$$ thus $\lambda(E\cap J)\leq 3\lambda(J)/4$, a contradiction.
Then $((E\cap J)+x)\cap (E\cap J)\neq\emptyset$, and so $x\in (E\cap J)-(E\cap J)\subseteq E-E$. Thus $E-E$ contains the box of $x$ such that $|x|\leq \epsilon$.
Is this valid? If not, can it be fixed? Many thanks.