The matrix diagonalizes to $$\begin{pmatrix}
0&0&0&0\\
0&-n&0&0\\
0&0&-n&0\\
0&0&0&-n\\
\end{pmatrix}$$
Let $A=\begin{pmatrix}
1&1&1&1\\
1&1&1&1\\
1&1&1&1\\
1&1&1&1\\
\end{pmatrix}$
And if $X=\begin{pmatrix}
x_1\\
\vdots \\
x_n
\end{pmatrix}$ let $\sum X=x_1+\cdots x_n$.
Then we have $$AX=\sum X \begin{pmatrix}
1\\
\vdots \\
1
\end{pmatrix}$$
Now consider the eigenvalue problem
$$(A-nI)X=\lambda X$$
or equivalently,
$$AX=(n+\lambda) X=\sum X \begin{pmatrix}
1\\
\vdots \\
1
\end{pmatrix}$$
Now if $\lambda +n \neq 0$ then $X$ is a multiple of $\begin{pmatrix}
1\\
\vdots \\
1
\end{pmatrix}$ and we have that $\lambda +n=n$ so $\lambda$ is zero with an eigenspace of dimension one.
Otherwise $\lambda=-n$ and this has an eigenspace of dimension $n-1$
as can be easily checked the vectors $$\begin{pmatrix}
1\\
0\\
\vdots \\
0\\-1\\
0\\
\vdots\\
0\\
\end{pmatrix}$$ are eigen vectors.
Finally it would be nice to check the minimal polynomial which should be $x(x+n)$