If you want to use the first part of the problem to prove the second, you can do so by using telescoping series.
Let
$$S=\cosh \theta+\cosh 2\theta+\cdots +\cosh n\theta$$
Multiply both the sides with $2\sinh\theta$ and then use the following:
$2\cosh \theta \sinh \theta=\sinh(2\theta)$
$2\cosh 2\theta \sinh \theta=\sinh 3\theta-\sinh \theta$
$2\cosh 3\theta \sinh \theta=\sinh 4\theta-\sinh 2\theta$
$2\cosh 4\theta \sinh \theta=\sinh 5\theta-\sinh 3\theta$
$\vdots$
$2\cosh (n-1)\theta \sinh \theta=\sinh n\theta-\sinh (n-2)\theta$
$2\cosh n\theta \sinh \theta=\sinh (n+1)\theta-\sinh (n-1)\theta$
Hence,
$$2S\sinh\theta=\sinh(n+1)\theta+\sinh(n\theta)-\sinh\theta$$
$$=2\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n+1}{2}\theta\right)+2\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n-1}{2}\theta\right)$$
$$=2\cosh\left(\frac{n+1}{2}\theta\right)\left(\sinh\left(\frac{n+1}{2}\theta\right)+\sinh\left(\frac{n-1}{2}\theta\right)\right)$$
$$=4\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n\theta}{2}\right)\cosh\left(\frac{\theta}{2}\right)$$
$$\Rightarrow S\sinh\left(\frac{\theta}{2}\right)=\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n\theta}{2}\right)$$
$$\Rightarrow \boxed{S=\cosh\left(\dfrac{n+1}{2}\theta\right)\sinh\left(\dfrac{n\theta}{2}\right)\text{csch}\left(\dfrac{\theta}{2}\right)}$$