1

On a question i am working thru it says:

Obtain the formula:$$ \sinh 2x - \sinh 2y = 2\cosh(x+y)\sinh(x-y) $$and prove that $$\coshθ + \cosh2θ +...+\cosh nθ =\cosh(0.5(n+1)θ)\sinh(0.5nθ)\text{csch}(0.5θ).$$ I am fine with the first part but am really stuck on the second. I have tried using geometric series but this does not seem to work. I presume i have to use the prevous part of the question but can not see how. Could some one give me some ideas/hints thanks?

user91500
  • 5,606
  • 1
    Use the formulas $\cosh\theta=(e^\theta+e^{-\theta})/2$ and $\sinh\theta=(e^\theta-e^{-\theta})/2$ and then the formula for the sum of a finite geometric progression. – Vladimir Jun 22 '14 at 09:09
  • $$\cosh(x)=\cos(ix)$$ and http://math.stackexchange.com/questions/117114/sum-cos-when-angles-are-in-arithmetic-progression – lab bhattacharjee Jun 22 '14 at 09:25
  • @Vladimir this is what i tried and i could not get it to work –  Jun 22 '14 at 09:34

2 Answers2

2

You are correct in thinking that geometric progression is the way to go. I do not think it is necessary to use the first part of the question.

Expressing the $\cosh$ function in terms of its constituent exponentials, we have two geometric series to consider $$\sum_{k=1}^n\cosh k\theta=\frac{1}{2}\left(\sum_{k=1}^ne^{k\theta}+\sum_{k=1}^ne^{-k\theta}\right)\\=\frac{1}{2}\left(e^\theta\frac{1-e^{n\theta}}{1-e^\theta}+e^{-\theta}\frac{1-e^{-n\theta}}{1-e^{-\theta}}\right)\\=\frac{1}{2}\left(e^\theta\frac{e^{n\theta/2}\color{blue}{(e^{-n\theta/2}-e^{n\theta/2})}}{e^{\theta/2}\color{blue}{(e^{-\theta/2}-e^{\theta/2})}}+e^{-\theta}\frac{e^{-n\theta/2}\color{blue}{(e^{n\theta/2}-e^{-n\theta/2})}}{e^{\theta/2}\color{blue}{(e^{\theta/2}-e^{-\theta/2})}}\right)$$ The fraction highlighted in blue is simply $\sinh(n\theta/2)\text{cosech}(\theta/2)$ which we can factorise out, leading to $$\sum_{k=1}^n\cosh k\theta=\sinh(n\theta/2)\text{cosech}(\theta/2)\frac{1}{2}(e^{(n+1)\theta/2}+e^{-(n+1)\theta/2})$$ Can you take it from here?

Alijah Ahmed
  • 11,609
1

If you want to use the first part of the problem to prove the second, you can do so by using telescoping series.

Let $$S=\cosh \theta+\cosh 2\theta+\cdots +\cosh n\theta$$ Multiply both the sides with $2\sinh\theta$ and then use the following:

$2\cosh \theta \sinh \theta=\sinh(2\theta)$

$2\cosh 2\theta \sinh \theta=\sinh 3\theta-\sinh \theta$

$2\cosh 3\theta \sinh \theta=\sinh 4\theta-\sinh 2\theta$

$2\cosh 4\theta \sinh \theta=\sinh 5\theta-\sinh 3\theta$

$\vdots$

$2\cosh (n-1)\theta \sinh \theta=\sinh n\theta-\sinh (n-2)\theta$

$2\cosh n\theta \sinh \theta=\sinh (n+1)\theta-\sinh (n-1)\theta$

Hence,

$$2S\sinh\theta=\sinh(n+1)\theta+\sinh(n\theta)-\sinh\theta$$ $$=2\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n+1}{2}\theta\right)+2\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n-1}{2}\theta\right)$$ $$=2\cosh\left(\frac{n+1}{2}\theta\right)\left(\sinh\left(\frac{n+1}{2}\theta\right)+\sinh\left(\frac{n-1}{2}\theta\right)\right)$$ $$=4\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n\theta}{2}\right)\cosh\left(\frac{\theta}{2}\right)$$ $$\Rightarrow S\sinh\left(\frac{\theta}{2}\right)=\cosh\left(\frac{n+1}{2}\theta\right)\sinh\left(\frac{n\theta}{2}\right)$$ $$\Rightarrow \boxed{S=\cosh\left(\dfrac{n+1}{2}\theta\right)\sinh\left(\dfrac{n\theta}{2}\right)\text{csch}\left(\dfrac{\theta}{2}\right)}$$

Pranav Arora
  • 11,014