$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{n! = \sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}\pars{n - k}^{n}}$
\begin{align}
\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}\pars{n - k}^{n}
&=n!\bracks{\overbrace{\color{#c00000}{%
{1 \over n!}\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}\pars{n - k}^{n}}}
^{\ds{{\rm S}\pars{n,n} = 1}}}
\end{align}
The $\color{#c00000}{\ds{\mbox{above red expression}}}$ is the
Stirling Number of the Second Kind
$\ds{{\rm S}\pars{n,n}}$. See formula $\pars{10}$ in the just cited link.
$\ds{{\rm S}\pars{n,n}}$ is the number of ways of partitioning a set of $\ds{n}$ elements into $\ds{n}$ nonempty sets which is obviously $\large\tt\mbox{equal to one}$.
$$\color{#66f}{\large%
n! = \sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}\pars{n - k}^{n}}
$$