Let $C=C[0,1]$ be the space of all continuous functions on $[0,1]$. Define $\|f \|=\max \ |f(x)|$. I want to show that $C$ is a Banach space.
Below is my attempt and I was wondering if it's ok.
I know I have to show that $C$ is a complete normed space.
Clearly, $\|f\| \geqslant 0$ and $\|f\|=0 \Leftrightarrow f=0$. $\|cf \|=\max~|cf(x)|=|c|\max |f(x)|=|c| \cdot \|f\|$.
$\|f+g\|=\max~|f(x)+g(x)|\leq \max~|f(x)|+\max~|g(x)|=\|f\|+ \|g\|$.
So $C$ is a normed space.
Next, I show that every Cauchy sequence in $C$ is convergent.
Let $\{f_n\}$ be a Cauchy sequence in $C$.
Let $\varepsilon \gt 0.$ Then $\exists$ an $N_1$ such that $$ \max~|f_n(x)-f_m(x)| \lt \frac{\varepsilon}{2}$$
for $n, m \gt N_1$ and $x\in[0,1]$.
But there is a subsequence $f_{k_n} $, which converges to $f$. So $\exists$ an $N_2$ such that $$ \max~\left|f_{k_n} - f\right|\lt \frac{\varepsilon}{2}$$ for each $n\gt N_2$.
Now Let $N = \max\{N_1, N_2\}$, if $n \gt N$ then $k_n \geqslant n\gt N$. So we have $$ \max~\left|f_n(x) - f(x)\right| \leqslant \max~\left|f_n - f_{k_n}\right| + \max~\left| f_{k_n} - f\right| \lt\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$ Thus, $\|f_n-f\| \to 0$ as $n\to \infty$. $\quad \square$
Thanks.