Use calculus of residues to evaluate the integral $$\int_0^{2\pi}\cos^{2n}\theta d\theta$$
My Ateempt :
$$\int_0^{2\pi}\frac{(1+\cos2\theta)^n}{2^n}d\theta$$ $$=\frac{1}{2^n} \int_C [1+\frac{1}{2}(z^2+\frac{1}{z^2})]^n\frac{dz}{iz}$$ $$=\frac{1}{2^{2n}i} \int_C \frac{(z^4+2z^2+1)^n}{z^{2n+1}}dz$$
Now the integrand has a pole of order $2n+1$ at $z=0$. The residue at $z=0$ is given by $$\frac{\phi^{2n}(z)}{(2n)!}$$
How do i find this residue ?