Here is the inductive step for anyone reading this...
Assuming $P(k-2)$: $a_{k-2} < \left(\frac{7}{4}\right)^{k-2}$
Assuming $P(k-1)$: $a_{k-1} < \left(\frac{7}{4}\right)^{k-1}$
Definition of $a_k$: $a_k=a_{k-1}+a_{k-2}$
Combining with inductive assumptions: $a_k < \left(\frac{7}{4}\right)^{k-2} + \left(\frac{7}{4}\right)^{k-1}$
Algebraically factor out $\left(\frac{7}{4}\right)^{k-2}$: $a_k < \left(\frac{7}{4}\right)^{k-2} \cdot \left(1 + \frac{7}{4}\right)$
$a_k < \left(\frac{7}{4}\right)^{k-2} \cdot \frac{11}{4}
= \left(\frac{7}{4}\right)^k \cdot \left(\frac{4}{7}\right)^2 \cdot \frac{11}{4}
= \left(\frac{7}{4}\right)^k \cdot \frac{44}{49}
< \left(\frac{7}{4}\right)^k$
$a_k < \left(\frac{7}{4}\right)^k$