Question: (From an Introduction to Convex Polytopes)
Let $(x_{1},...,x_{n})$ be an $n$-family of points from $\mathbb{R}^d$, where $x_{i} = (\alpha_{1i},...,\alpha_{di})$, and $\bar{x_{i}} =(1,\alpha_{1i},...,\alpha_{di})$, where $i=1,...,n$. Show that the $n$-family $(x_{1},...,x_{n})$ is affinely independent if and only if the $n$-family $(\bar{x_{1}},...,\bar{x_{n}})$ of vectors from $\mathbb{R}^{d+1}$ is linearly independent.
-
Here is what I have so far, it is mostly just writing out definitions, if you can give me some hints towards how I can start the problem that would be great.
$(\Rightarrow)$ Assume that for $x_{i} = (\alpha_{1i},...,\alpha_{di})$, the $n$-family $(x_{1},...,x_{n})$ is affinely independent. Then, a linear combination $\lambda_{1}x_{1} + ... + \lambda_{n}x_{n} = 0$ can only equal the zero vector when $\lambda_{1} + ... + \lambda_{n} = 0$. An equivalent characterization of affine independence is that the $(n-1)$-families $(x_{1}-x_{i},...,x_{i-1}-x_{i},x_{i+1}-x_{i},...,x_{n}-x_{i})$ are linearly independent. We want to prove that for $\bar{x_{i}}=(1,\alpha_{1i},...,\alpha_{di})$, the $n$-family $(\bar{x}_{1},...,\bar{x}_{n})$ of vectors from $\mathbb{R}^{d+1}$ is linearly independent.