$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{1}{\arctan\pars{x} \over x\root{1 - x^{2}}}\,\dd x:\ {\large ?}}$
Let's consider
$\ds{\fermi\pars{\mu} \equiv
\int_{0}^{1}{\arctan\pars{\mu x} \over x\root{1 - x^{2}}}\,\dd x\,,\quad\fermi\pars{0} = 0\,,\qquad\fermi\pars{1}={\large ?}}$:
\begin{align}
\fermi'\pars{\mu}&=
\int_{0}^{1}{\dd x \over \pars{\mu^{2}x^{2} + 1}\root{1 - x^{2}}}
=\int_{0}^{\pi/2}{\dd\theta \over \mu^{2}\cos^{2}\pars{\theta} + 1}
=\int_{0}^{\pi/2}{\sec^{2}\pars{\theta}\,\dd\theta\over \mu^{2} + 1 + \tan^{2}\pars{\theta}}
\\[3mm]&=\int_{0}^{\infty}{\dd t \over t^{2} + 1 + \mu^{2}}
={1 \over \root{1 + \mu^{2}}}\int_{0}^{\infty}{\dd t \over t^{2} + 1}
={\pi \over 2}\,{1 \over \root{1 + \mu^{2}}}
\end{align}
\begin{align}
\fermi\pars{1}&={\pi \over 2}\
\overbrace{\int_{0}^{1}{\dd\mu \over \root{1 + \mu^{2}}}}
^{\ds{\mbox{Set}\ \mu \equiv \sinh\pars{\theta}}}
={\pi \over 2}\,{\rm arcsinh}\pars{1}
\end{align}
$$\color{#66f}{\large%
\int_{0}^{1}{\arctan\pars{x} \over x\root{1 - x^{2}}}\,\dd x
={\pi \over 2}\,{\rm arcsinh}\pars{1}} \approx 1.3845
$$