3

I'm trying to find the mass of a spherical object with a given density function, and to do so I must solve this integral $$\int_{0}^{\pi}\sin^5{\theta}\cos^2{\theta}\ d\theta,$$

but no matter which method I choose (integration by parts, substitution, etc) I can't for the life of my figure out the anti-derivative.

Tunk-Fey
  • 24,849
Oria Gruber
  • 12,739

2 Answers2

3

Let $x=\cos\theta$ then $dx=-\sin\theta d\theta$ hence

$$\int_0^\pi \sin^5\theta\cos^2\theta d\theta=\int_{-1}^1(1-x^2)^2x^2dx$$ Can you take it from here?

1

Another approach:

Consider Beta function $$ \text{B}(x,y)=2\int_0^{\Large\frac\pi2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\ d\theta=\frac{\Gamma(x)\cdot\Gamma(y)}{\Gamma(x+y)}. $$ Rewrite $$ \int_0^{\large\pi}\sin^5\theta\cos^2\theta\ d\theta=2\int_0^{\Large\frac\pi2}\sin^5\theta\cos^2\theta\ d\theta, $$ then $$ \int_0^{\large\pi}\sin^5\theta\cos^2\theta\ d\theta=\frac{\Gamma\left(3\right)\cdot\Gamma\left(\dfrac32\right)}{\Gamma\left(\dfrac92\right)}=\frac{2!\cdot\Gamma\left(\dfrac32\right)}{\dfrac72\cdot\dfrac52\cdot\dfrac32\cdot\Gamma\left(\dfrac32\right)}=\large\color{blue}{\frac{16}{105}}, $$ where $\Gamma(n+1)=n\cdot\Gamma(n)$.

Tunk-Fey
  • 24,849