Calculation of Integral values of $x$ for which the expression $x^2+19x+92$ is a perfect square.
$\bf{My\; Solution::}$ Let $x^2+19x+92 = k^2\;,$ where $x,k\in \mathbb{Z}$
$$x^2+19x+(92-k^2)=0$$
Now $$\displaystyle x = \frac{-19\pm \sqrt{19^2-4(92-k^2)}}{2} = \frac{-19\pm \sqrt{4k^2-7}}{2}$$
Now for perfect square $\displaystyle 4k^2-7 = 0\Rightarrow k=\pm \frac{\sqrt{7}}{2}$
But it is wrong,
Please explain me how can i solve it and where i am wrong,
thanks