$${\LARGE\int}_0^\tfrac\pi2\frac{dx}{\bigg(\sqrt[{\Large 5}]{\cos^5x+10\cos^3x\sin^2x+5\cos x\sin^4x}\bigg)^{\large 2}}~=~?$$
Its numerical value is about $1.40171345128228$. Maple, Mathematica, and the Inverse Symbolic Calculator are not able to return any closed form.
Motivation:
The above integral is, up to a certain scaling factor, nothing else than the area between the graphic of $x^n+y^n=r^n$, and the second bisector, for $n=5$. For even values of the exponent, we have the area of $x^{2k}+y^{2k}=r^{2k}$ being equal to $A_{2k}=\displaystyle(2r)^2\cdot{2a\choose a}^{-1}$, where $a=\dfrac1{2k}$. For $n\!=\!3$ we have $A_3=\dfrac{r^2}{\sqrt[3]4}\cdot B\bigg(\dfrac12,\dfrac13\bigg)$. But how to compute its value for odd exponents greater than $3$ is beyond
me. In this case, $A_5=r^2\cdot\sqrt[5]8\cdot I$
$\qquad\qquad$
$$x^5+y^5=1$$