6

Perhaps some may enjoy giving this one a go. It may be kind of challenging.

$$\int_{0}^{\infty}\frac{x}{x^{2}+b^{2}}\log\left(\frac{x^{2}+2ax\cos(t)+a^{2}}{x^{2}-2ax\cos(t)+a^{2}}\right)dx$$

$$=\frac{\pi^{2}}{2}-\pi t+\pi\tan^{-1}\left(\frac{(a^{2}-b^{2})\cos(t)}{(a^{2}+b^{2})\sin(t)+2ab}\right), \;\ a,b>0; \;\ 0<t<\pi$$

Cody
  • 14,054
  • I have a rough idea. Convert to complex exponential then differentiate with respect to t. Then we can solve the resultant integral using residues. It remains to find the anti derivative of the result. – Zaid Alyafeai Jun 08 '14 at 18:28

1 Answers1

11

$$I(t)=\int_0^{\infty} \frac{x}{x^2+b^2}\ln\left(\frac{x^2+2ax\cos(t)+a^2}{x^2-2ax\cos(t)+a^2}\right)\,dx$$ $$I'(t)=\int_0^{\infty} \frac{x}{x^2+b^2}\left(\frac{-2ax\sin(t)}{x^2+2ax\cos(t)+a^2}-\frac{2ax\sin(t)}{x^2-2ax\cos(t)+a^2}\right)\,dx$$ $$\begin{aligned} \Rightarrow I'(t) \,& =-2a\int_0^{\infty}\frac{x}{x^2+b^2}\left(\frac{x\sin(t)}{x^2+2ax\cos(t)+a^2}+\frac{x\sin(t)}{x^2-2ax\cos(t)+a^2}\right)\,dx\\ & =-2a\,\Im\left(\int_0^{\infty} \frac{x}{x^2+b^2}\left(\frac{e^{it}}{x+ae^{it}}+\frac{e^{it}}{x-ae^{it}}\right)\,dx\right)\,\,\,\,\,\,\,\,(1)\\ & = -2a\,\Im\left(2e^{it} \int_0^{\infty} \frac{x^2}{(x^2+b^2)(x^2-a^2e^{2it})}\,dx \right)\\ & = -2a\,\Im\left(2e^{it}\frac{\pi}{2(b-iae^{it})}\right)\,\,\,\,\,\,\,\,(2)\\ & = -2\pi a\,\Im\left(\frac{e^{it}}{b-iae^{it}}\right)\\ & = -2\pi a\,\frac{b\sin t+a}{b^2+2ab\sin t+a^2}\,\,\,\,\,\,(3)\\ & = -\pi\left(1+\frac{a^2-b^2}{b^2+2ab\sin(t)+a^2}\right)\\ \end{aligned}$$

$$\Rightarrow I(t)=-\pi t-2\pi\arctan\left(\frac{(a^2+b^2)\tan(t/2)+2ab}{a^2-b^2}\right)+C\,\,\,\,\,\,(4)$$ Since $I(\pi/2)=0$, $C=\frac{\pi^2}{2}+2\pi\arctan\left(\frac{a+b}{a-b}\right)$. $$\Rightarrow I(t)=\frac{\pi^2}{2}-\pi t-2\pi\arctan\left(\frac{(a^2+b^2)\tan(t/2)+2ab}{a^2-b^2}\right)+2\pi\arctan\left(\frac{a+b}{a-b}\right)$$ The above expression can be shown equivalent to as shown in OP by simplifying arctangents: $$\begin{aligned} -2\pi\left(\arctan\left(\frac{(a^2+b^2)\tan(t/2)+2ab}{a^2-b^2}\right)-\arctan\left(\frac{a+b}{a-b}\right)\right) &=2\pi\arctan\left(\frac{a-b}{a+b}\frac{1-\sin(t)}{\cos t}\right)\\ &=\pi\arctan\left(\frac{(a^2-b^2)\cos(t)}{(a^2+b^2)\sin(t)+2ab}\right) \end{aligned}$$ Hence $$I(t)=\frac{\pi^2}{2}-\pi t+\pi\arctan\left(\frac{(a^2-b^2)\cos(t)}{(a^2+b^2)\sin(t)+2ab}\right)$$


Proof of $(1)$: $$\begin{aligned} \frac{x\sin t}{x^2+2ax\cos(t)+a^2}&=\frac{1}{2i}\frac{x(e^{it}-e^{-it})}{x^2+axe^{it}+axe^{-it}+a^2}\\ &= \frac{1}{2i}\left(\frac{e^{it}}{x+ae^{it}}-\frac{e^{-it}}{x+ae^{-it}}\right)\\ &= \Im\left(\frac{e^{it}}{x+ae^{it}}\right)\,\,\,\,\,\,\left(\because \Im(z)=\frac{1}{2i}(z-\bar{z})\right)\\ \end{aligned}$$

Similarly it can be shown that: $$\frac{x\sin t}{x^2-2ax\cos(t)+a^2}=\Im\left(\frac{e^{it}}{x-ae^{it}}\right)$$


Proof for $(2)$: $$\begin{aligned} \int_0^{\infty} \frac{x^2}{(x^2+b^2)(x^2-a^2e^{2it})}\,dx &=\frac{1}{b^2+a^2e^{2it}}\int_0^{\infty} \left(\frac{x^2}{x^2+b^2}-\frac{x^2}{x^2-a^2e^{2it}}\right)\,dx\\ &= -\frac{1}{b^2+a^2e^{2it}}\int_0^{\infty} \left(\frac{b^2}{x^2+b^2}+\frac{a^2e^{2it}}{x^2-a^2e^{2it}}\right)\,dt\\ &=\frac{1}{b^2+a^2e^{2it}} \left(\frac{\pi b}{2}+\frac{\pi iae^{it}}{2}\right)\\ &=\frac{\pi}{2}\frac{1}{(b+iae^{it})(b-ia^{it})}(b+iae^{it})\\ &=\frac{\pi}{2(b-iae^{it})}\\ \end{aligned} $$


Proof for $(3)$:

$$\begin{aligned} \Im\left(\frac{e^{it}}{b-iae^{it}}\right) &= \Im\left(\frac{\cos(t)+i\sin(t)}{(b+a\sin(t))-ia\cos(t)}\right)\\ &=\Im\left(\frac{(cos(t)+i\sin(t))(b+a\sin(t)+ia\cos(t))}{(b+\sin(t))^2+a^2\cos^2(t)}\right)\\ &= \frac{b\sin (t)+a}{b^2+2ab\sin(t)+a^2}\\ \end{aligned}$$


Proof for $(4)$: $$\begin{aligned} \int \frac{a^2-b^2}{b^2+2ab\sin(t)+a^2}\,dt &=(a^2-b^2)\int \frac{\sec^2(t/2)}{(a^2+b^2)(1+\tan^2(t/2))+4ab\tan(t/2)}\,dt\\ &= 2(a^2-b^2)\int \frac{dp}{(a^2+b^2)(1+p^2)+4abp}\,\,\,\,\,\,\,\,\,\left(p=\tan(t/2)\right)\\ &=2\frac{a^2-b^2}{a^2+b^2}\int\frac{dp}{p^2+\frac{4abp}{a^2+b^2}+1}\\ &=2\frac{a^2-b^2}{a^2+b^2}\int \frac{dp}{\left(p+\frac{2ab}{a^2+b^2}\right)^2+\left(\frac{a^2-b^2}{a^2+b^2}\right)^2}\\ &=2\arctan\left(\frac{(a^2+b^2)\tan(t/2)+2ab}{a^2-b^2}\right)+C\\ \end{aligned}$$

Pranav Arora
  • 11,014