Let $\alpha =\dfrac {56}2, \beta=\dfrac 1 2\sqrt{\dfrac{84640}{27}}$ and $\gamma =\root 3\of {\alpha -\beta}+\root 3\of {\alpha +\beta}$.
All the numbers taken are supposed to be real.
Now note that
$$\begin{align}
\gamma ^3&=\left(\root 3\of {\alpha -\beta}\right)^3+3\root 3\of {\alpha -\beta}^2\root 3\of {\alpha +\beta}+3\root 3\of {\alpha -\beta}\root 3\of {\alpha +\beta}^2+\left(\root 3\of {\alpha +\beta}\right)^3\\
&=\alpha -\beta +3\root 3\of {\alpha -\beta}\root 3\of {\alpha +\beta}\Bigl(\underbrace{\root 3\of {\alpha -\beta}+\root 3\of {\alpha +\beta}}_{\huge =\gamma}\Bigr)+\alpha +\beta\\
&=2\alpha+3\root 3\of {\alpha ^2-\beta ^2}\gamma.
\end{align}$$
Since $\alpha ^2=784$ and $\beta ^2=\dfrac{21160}{27}$ it follows that $\alpha ^2-\beta ^2=\dfrac{21168}{27}-\dfrac{21160}{27}=\dfrac 8{27}$.
Thus $\root 3\of {\alpha ^2+\beta ^2}=\dfrac 2 3$.
One concludes that $\gamma$ is such that $\gamma^3=56+2\gamma$, hence $\gamma$ is a (the only) real root of $x^3-2x-56$.