3

Is $\displaystyle\sqrt[\huge3]{\frac{1}{2} \left(56-\sqrt{\frac{84640}{27}}\right)}+\sqrt[\huge 3]{\frac{1}{2} \left(\sqrt{\frac{84640}{27}}+56\right)}=4$ true ?

This was asked during an oral examination where calc and CAS are forbidden.

Mathematica seems to say it's true.

Can someone find a nice proof ?

Gabriel Romon
  • 35,428
  • 5
  • 65
  • 157

3 Answers3

3

Let $\alpha =\dfrac {56}2, \beta=\dfrac 1 2\sqrt{\dfrac{84640}{27}}$ and $\gamma =\root 3\of {\alpha -\beta}+\root 3\of {\alpha +\beta}$.

All the numbers taken are supposed to be real.

Now note that $$\begin{align} \gamma ^3&=\left(\root 3\of {\alpha -\beta}\right)^3+3\root 3\of {\alpha -\beta}^2\root 3\of {\alpha +\beta}+3\root 3\of {\alpha -\beta}\root 3\of {\alpha +\beta}^2+\left(\root 3\of {\alpha +\beta}\right)^3\\ &=\alpha -\beta +3\root 3\of {\alpha -\beta}\root 3\of {\alpha +\beta}\Bigl(\underbrace{\root 3\of {\alpha -\beta}+\root 3\of {\alpha +\beta}}_{\huge =\gamma}\Bigr)+\alpha +\beta\\ &=2\alpha+3\root 3\of {\alpha ^2-\beta ^2}\gamma. \end{align}$$

Since $\alpha ^2=784$ and $\beta ^2=\dfrac{21160}{27}$ it follows that $\alpha ^2-\beta ^2=\dfrac{21168}{27}-\dfrac{21160}{27}=\dfrac 8{27}$.

Thus $\root 3\of {\alpha ^2+\beta ^2}=\dfrac 2 3$.

One concludes that $\gamma$ is such that $\gamma^3=56+2\gamma$, hence $\gamma$ is a (the only) real root of $x^3-2x-56$.

Git Gud
  • 31,356
3

What are these guys sadists ? How is one supposed to answer this in an oral exam ? Anyway here is another solution, we recognise the expression as the form of Cardano's solution to the cubic $x^3+px+q=0$ $$\frac{1}{3}\left( \sqrt[3]{-\frac{27}{2}q + \frac{3\sqrt{-3D}}{2}}+ \sqrt[3]{-\frac{27}{2}q - \frac{3\sqrt{-3D}}{2}} \right)$$ where $D=-27q^2-4p^3$ if we multiply the $\frac{1}{3}$ through we have $$ \sqrt[3]{\frac{1}{2}(-q + \sqrt{ \frac{-3D}{27} })}+ \sqrt[3]{\frac{1}{2}(q - \sqrt{\frac{-D}{27}}} )$$ So we recognise immediately that $q=-56$ and $-D=84640$ so $$27q^2+4p^3=84640$$ and this gives $p=-2$ So the cubic in question is $x^3-2x-56$ which has the root $4$.

0

cubing both sides, $56+(\frac{1}{4}(56^2-\frac{84640}{27}) )^{1/3}(4)=64$ simplify and you will get the result.

Satvik Mashkaria
  • 3,636
  • 3
  • 19
  • 37