I have started doing integration by parts: $$\int_{0}^{2\pi}{\sin^8(x)}{dx} = \int_{0}^{2\pi}{\sin^7(x)}\cdot{\sin(x)dx} = \int_{0}^{2\pi}{\sin^7(x)}\cdot{d(-\cos(x))} = \left. -\cos(x) \cdot \sin^7(x) \right|_0^{2\pi} + \int_{0}^{2\pi}{\cos(x)}{d(\sin^7(x))} = \left. -\cos(x) \cdot \sin^7(x) \right|_0^{2\pi} + \int_{0}^{2\pi}{\cos^2(x) \cdot 7 \cdot \sin^6(x)}{dx} = \dots$$
Is there a better way to do it?