Given that $$ f(x) = \frac{x}{1+x^2} $$
I have to find $$\frac{f(x) - f(a)}{x-a}$$
So some progressing shows that:
$$ \frac{\left(\frac{x}{1+x^2}\right) - \left(\frac{a}{1+a^2}\right)}{x-a} = \frac{(x)(1+a^2)-(a)(1+x^2)}{(1+x^2)(1+a^2)}\cdot\frac{1}{x-a} = \frac{x+xa^2-a-ax^2}{(1+x^2)(1+a^2)(x-a)} $$
Now, is it possible to factor $x+xa^2-a-ax^2$? I can't seem to find a way, as for simplifying the whole thing. Is there any rule I can use, and I'm unable to see?