Proof:
Let $k\in I$, $\quad U_{i} = X_k \times ... \times X_{k} \times ... \times A_{i} \times ... \qquad $ where $A_{i}$ is open in $\{0,1\}$ with the discrete topology in the position $i\in I$
Then
$$ U_{i} = X_k \times \dots \times \dots \times \dots \times A_i \times \dots \in \mathcal{T}_{\text{product}}$$ y
$$\quad U_{j} = X_{k}\times ... \times ... A_{j} \times ... \times X_{k} \times ... \in \mathcal{T}_{\text{product}}$$
Then $ U_i \cap U_j \in \mathcal{T}_{\text{product}} (i\neq j)$
We have that $U_i = X_k \times \dots \times X_k \times \dots \times \{1\} \times \dots $ is in the i- esima position and $\quad U_j = X_k \times ... \times \{0\} \times ... \times X_{k} \times ...$ is in the j-esima position.
Let $V = U_i \cap U_j $ then $ V \cap D \neq \emptyset$ since $\bar{D} = X$ (D is dense on X).
So $\exists (\alpha _{i}\in X)(\alpha _i\in V\cap D)$ this is $ \alpha _{i} = (\, , \dots,0, \dots 1, \dots)$ where $0$ is in the position i-esima and $1$ is in the e $j-$esima position. So we have that
$$\alpha _{i}\in P_{i}^{-1}(1) \wedge \alpha _{i}\in D\Rightarrow \alpha _{i}\in D\cap P_{i}^{-1}(1)\Rightarrow \alpha _{i}\in D_{i}$$
But $\alpha _{i}\notin P_{j}^{-1}(1)$ because in the position $<<j>>$ $\alpha _{i}$ is zero. Then
$$\alpha _{i}\notin D_{j}\Rightarrow \forall (i,j \in I )(D_i \neq D_j)
\Rightarrow \forall (i\in I)(\alpha _{i}\in D_{i}\subseteq D)\Rightarrow \forall(i\in I)(\alpha _{i}\in D)$$
Since $\forall (i,j \in I)(D_i \neq D_j)$ then for each $D_i$ there is an element in $D$. So D has as much elements like I and this is a contradiction since $D$ is an enumerable set.
The credit for this proof is due to Michael Olmos.