The function $\displaystyle{f:\left[0,\frac{\pi}{4}\right]\longrightarrow \mathbb{R}}$ defined by
$$\displaystyle{f(x)=\left[\dfrac{\left(1-x^2\right)\,\ln\,\left(1+x^2\right)+\left(1+x^2\right)-\left(1-x^2\right)\,\ln\,\left(1-x^2\right)}{\left(1-x^4\right)\,\left(1+x^2\right)}\right]\,x\,\exp\,\left[\dfrac{x^2-1}{x^2+1}\right]}$$
is continuous at $\displaystyle{\left[0,\frac{\pi}{4}\right]}$ , so $\displaystyle{J<\infty}$ .
Also,
$$\displaystyle{\dfrac{\rm{d}}{\rm{dx}}\left[\ln\,\left(1+x^2\right)-\ln\,\left(1-x^2\right)\right]=\dfrac{2\,x}{1+x^2}+\dfrac{2\,x}{1-x^2}=\dfrac{4\,x}{\left(1+x^2\right)\,\left(1-x^2\right)}}$$
and
$$\displaystyle{\dfrac{\rm{d}}{\rm{dx}}\,\left[\dfrac{x^2-1}{x^2+1}\right]=\dfrac{\rm{d}}{\rm{dx}}\,\left[1-\dfrac{2}{x^2+1}\right]=\dfrac{4\,x}{\left(x^2+1\right)^2}}$$
Therefore,
{\begin{aligned} J&=\int_{0}^{\frac{\pi}{4}}\left[\dfrac{\left(1-x^2\right)\,\ln\,\left(1+x^2\right)+\left(1+x^2\right)-\left(1-x^2\right)\,\ln\,\left(1-x^2\right)}{\left(1-x^4\right)\,\left(1+x^2\right)}\right]\,x\,\exp\,\left[\dfrac{x^2-1}{x^2+1}\right]\,\rm{dx}\\&=\int_{0}^{\frac{\pi}{4}}\left[\dfrac{\left(1-x^2\right)\,\left(\ln\,\left(1+x^2\right)-\ln\,\left(1-x^2\right)\right)+\left(1+x^2\right)}{\left(1-x^2\right)\,\left(1+x^2\right)^2}\right]\,x\,\exp\,\left[\dfrac{x^2-1}{x^2+1}\right]\,\rm{dx}\\&=\frac{1}{4}\,\int_{0}^{\frac{\pi}{4}}\left[\dfrac{4\,x}{\left(1+x^2\right)^2}\,\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\,\left(\ln\,\left(1+x^2\right)-\ln\,\left(1-x^2\right)\right)+\dfrac{4\,x}{\left(1-x^2\right)\,\left(1+x^2\right)}\,\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\right]\,\rm{dx}\\&=\frac{1}{4}\,\int_{0}^{\frac{\pi}{4}}\left[\left(\dfrac{x^2-1}{x^2+1}\right)'\,\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\,\left(\ln\,\left(1+x^2\right)-\ln\,\left(1-x^2\right)\right)+\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\,\left(\ln\,\left(\dfrac{1+x^2}{1-x^2}\right)\right)'\right]\,\rm{dx}\\&=\frac{1}{4}\,\int_{0}^{\frac{\pi}{4}}\left[\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\,\ln\,\left(\dfrac{1+x^2}{1-x^2}\right)\right]'\,\rm{dx}\\&=\left[\frac{1}{4}\,\exp\,\left(\dfrac{x^2-1}{x^2+1}\right)\,\ln\,\left(\dfrac{1+x^2}{1-x^2}\right)\right]_{0}^{\frac{\pi}{4}}\\&=\frac{1}{4}\,\exp\,\left(\dfrac{\pi^2-16}{\pi^2+16}\right)\,\ln\,\left(\dfrac{16+\pi^2}{16-\pi^2}\right)\end{aligned}