$\begin{align}
{\bf Hint}\ \ \ a\ &=\ \color{#c00}b\ \ +\,n\,j\\
c\, &= \ \ \color{#0a0}d\,+\,n\,k\\
\Longrightarrow\,\ ac &= \color{#c00}b\color{#0a0}d\,+\,n\:\!(\ldots)\ \ \text{for an } {\it integer} \ (\ldots)
\end{align}$
Remark $\, $ If $\,n = 10\,$ then this generalizes a units digit rule well-known from decimal arithmetic, namely mod $10,\,$ the units digit of a product is congruent to the product of the unit digits, e.g. $\,1\color{#c00}3\cdot 1\color{#0a0}6 = 208\,$ has units digit $\,\color{#c00}3\cdot\color{#0a0}6\equiv 8.\,$ Said in the language of the Congruence Product Rule
$$\begin{eqnarray}{\rm mod}\ 10\!:\ &&1\color{#00}{3}\equiv \color{#c00}3,\ \ 1\color{0a0}{6}\equiv \color{#0a0}6\\[.2em]
\Longrightarrow\ &&1\color{c00}{3}\cdot 1\color{0a0}{6}\equiv \color{#c00}3\cdot \color{#0a0}6\equiv 8\end{eqnarray}\qquad\qquad\qquad $$
We can view the Congruence Product Rule as a radix $\,n\,$ generalization of the units digit product rule. However, it is more general, since the "units digits" $\,\color{#c00}b,\color{#0a0}d\,$ need not lie in the interval $\,[0,n\!-\!1].$
The prior linked post has proofs of all of the common congruence arithmetic rules.