let characteristic polynomial $P_A(x)=(x+2)^4(x-3)^2$ and
minimal polynomial $m_A=(x+2)^3(x-3)$ find the jordan form that possible.
we know $q_6=\frac{f_6}{f_5}$ ($f_i$ is gcd{det of i x i submatrices which isnt equal to 0})
$q_6=\frac{f_6}{f_5}=\frac{(x+2)^4(x-3)^2}{f_5}=(x+2)^3(x-3)^2$ so $f_5=(x+2)(x-3)$
I know $q_5.q_4.q_3.q_2.q_1=(x+2)(x-3)$
how do we find the rest?$ (q_5,q_4,q_3...) $
can we choose them arbitrary like $q_5=x+2,q_4=x-3,q_3=q_2=q_1=1$ or $q_5=(x-3)(x+2),q_4=q_3=q_2=q_1=1$ ?