How to prove that $(R, +, \cdot)$ is a ring (or not), where $R = \{x + y \cdot \sqrt{3} | x, y \in \mathbb{Z} \}$?
Update. Is this proof correct?
$(R, +)$ is an abelian group:
- Closure: $a, b \in R \implies (a + b) \in R$.
- Associativity: $a, b, c \in R \implies (a + b) + c = a + (b + c)$.
- Identity: $0 \in R$.
- Inverse: $-(x + y \sqrt{3}) \in R$.
- Commutativity: $a, b \in R \implies a + b = b + a$.
$(R, \cdot)$ is a monoid:
- Closure: $(x_1 + y_1 \sqrt{3}) \cdot (x_2 + y_2 \sqrt{3}) = x + y \sqrt{3}$, where $x = x_1 x_2 + 3 y_1 y_2 \in \mathbb{Z}$ and $y = x_1 y_2 + x_2 y_1 \in \mathbb{Z}$.
- Identity: $1 \in R$.
Multiplication distributes over addition:
$a, b, c \in R \implies$
- Left distributivity: $a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)$
- Right distributivity: $(b + c) ⋅ a = (b ⋅ a) + (c ⋅ a)$