$\begin{eqnarray}{\bf Hint}\ \ \text{determinant of}\,\ \color{#c00}{\left[ \begin{array}{cr} 1 &\!\! -1\\ 1 & 1\end{array}\right]} \left[ \begin{array}{cc} a & x\\ b & y\end{array}\right] &=& \left[ \begin{array}{cc} a\!-\!b &\! x\!-\!y\\ a\!+\!b &\! x\!+\!y\end{array}\right] \\[.6em]
\Longrightarrow_{\phantom{|_{|_|}}}\ \color{#c00}2\ {{(\color{#0a0}{ay\! -\! bx})}} &=&\, (\color{#90f}{a\!-\!b})(x\!+\!y)-(\color{#90f}{a\!+b})(x\!-\!y)
\end{eqnarray}$
By Bezout there are $\,\color{#0A0}{x,y}\in\Bbb Z\,$ with $ \color{#0a0}{ay\!-\!bx\!=\!1}\,$ so $\,d\mid\color{#90f}{a\!-\!b,a\!+\!b}\Rightarrow d\,|\, {\rm\small RHS}\Rightarrow d\,|\,\color{#c00}2(\color{#0a0}1)\! =\! \rm\small LHS$
Remark $\ $ The method generalizes to any linear map $\ (m,n)\mapsto (m,n)A = (am\!+\!bn,cm\!+\!dn)$
$\begin{eqnarray}\phantom{\bf Hint}\ \ \text{determinant of}\,\ \left[ \begin{array}{cr} a&\!\! b\\ c & d\end{array}\right] \left[ \begin{array}{cc} m & x\\ n & y\end{array}\right] &=& \left[ \begin{array}{cc} am\!+\!bn &\! ax\!+b\!y\\ cm\!+\!dn &\! cx\!+\!dy\end{array}\right] \\[.3em]
\Rightarrow\ \ D\!\!\!\!\!\!\!\!\! \smash[b]{\underbrace{(my - nx)}_{\quad\ \ \large =\,(m,n)\ {\rm by\ Bezout}}}\!\!\!\!\!\!\!\!\!\!\! &=& (am\!+\!bn)(cx\!+dy)-(cm\!+\!dn)(ax\!+\!by)\\ \\
\end{eqnarray}$
Therefore we deduce that $\ (am\!+\!bn,\,cm\!+\!dn)\mid D\, (m,n)\ $ since it divides $\rm\small RHS$ so also $\rm\small LHS$. Alternatively, this can also be deduced using Cramer's Rule, e.g. see this answer. Notice that the question is simply the special case when the determinant $\,D = 2,\,$ and the gcd $\,(m,n) = 1.\,$