$x^2+1\equiv 0 \mod 99$
I rearranged the congruence to get $x^2\equiv -1 \mod 99$.
We have an isomorphism $\ \mathbb{Z}/99\mathbb{Z}\to\mathbb{Z}/ 3 \mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/11\mathbb{Z}$.
Solving modulo $3$ first, $\ x^2\equiv -1 \mod 3$.
We find that there are no solutions. Likewise for $x^2\equiv -1\mod 11$.
Therefore $x^2+1\equiv 0 \mod 99$ has no solutions.
Is this correct?