Let $p$ be a prime number and let $F_p$ be the Frobenius automorphism of $\overline{\mathbb F_p}$.
Given an explicit element $x $ of $\overline{\mathbb Q_p}$, how do I compute $F_p(x)$?
Does it even make sense?
Let $p$ be a prime number and let $F_p$ be the Frobenius automorphism of $\overline{\mathbb F_p}$.
Given an explicit element $x $ of $\overline{\mathbb Q_p}$, how do I compute $F_p(x)$?
Does it even make sense?