I need to understand the following theorem, so i did an example. But i realized that i don't get everything in the finite field theory. can somebody check the example and say where the mistake is?
Thm: Let $q=p^e$ for some positive integer $e$.
a) if $k \geq 2$ is an even integer or $k$ is odd and $q$ is even, then $f_{a,b,k}(x):=ax^q+bx+(x^q-x)^k, a,b \in \mathbb{F}_{q^2}$ with $a+b \in \mathbb{F}^*_q$, permutes $\mathbb{F}_{q^2}$ if and only if $b\not=a^q$.
b) if $k$ and $q$ are odd positive integers, then $f_{a,k}(x):=ax^q+a^qx+(x^q-x)^k, a \in \mathbb{F}^*_{q^2}$ with $a+a^q \not=0$, permutes $\mathbb{F}_{q^2}$ if and only if gcd($k,q-1)=1$.
My example for a): I take $k=2,q=2$. So $k$ is an even integer bigger or equal 2. Now i choose $a$ and $b$, and i think here is my mistake: $a,b \in \mathbb{F}_{q^2}$. That means a,b are polynomials in the form: $a_1+a_2w$ where $a_1,a_2$ are in $\mathbb{F}_2$, hence $a_1,a_2$ are either $0$ or $1$.$w$ is in $\mathbb{F}_{2^2}$, that means w is either $1,x$ or $x^2$.
So I choose: $a=1+x^2, b=1.$
Then i check if $a+b \in \mathbb{F}^*_q$: $a+b=1+1+x^2=2+x^2=x^2$, since we have $q=2$. Therefore $a+b=x^2 \in \mathbb{F}^*_q$.
So i can apply the theorem: $a^q=(1+x^2)^2=1+x^4=1+x \not=b$.
Therefore $f_{a,b,k}$ permutes $\mathbb{F}_{q^2}$.
So I check if this is true:
$f_{a,b,k}(x)=(1+x^2)x^2+x+(x^2-x)^2=x^2+x^4+x+x^4+x^2=x$ since $x \in \mathbb{F}_4.$
Therfore $f_{a,b,k}$ does permutes $\mathbb{F}_{q^2}$.
I hope anybody can help! I appreciate any help!
b) I take $q=k=3$.
$\Rightarrow F_3=\{0,1,2\}$ and $F^*_9=\{1,2,\alpha, 2\alpha, 1+\alpha, 1+2\alpha, 2+\alpha, 2+2\alpha\}.$
So to choose a, i have the condition $a+a^q \not=0$. So for example, i take $a=1$. $\Rightarrow 1+1^2=2 \not=0$.
Since gcd$(3,2)=1$, it follows by the theorem that $f_{1,3}(x)$ permutes $F_9$.
Check: $f_{1,3}(x)=x^3+x+(x^3-x)^3=2x^3+2x.$
$\Rightarrow: f_{1,3}(0)=0 \ (modulo \ 9), f_{1,3}(1)=4 \ (modulo \ 9), f_{1,3}(2)=2 \ (modulo \ 9), f_{1,3}(3)=6 \ (modulo \ 9), f_{1,3}(4)=1 \ (modulo \ 9), f_{1,3}(5)=8 \ (modulo \ 9), f_{1,3}(6)=3 \ (modulo \ 9), f_{1,3}(7)=7 \ (modulo \ 9), f_{1,3}(8)=5 \ (modulo \ 9).$
So it is true!