In $\mathbb{R}^n$, I know that if $A$ is a convex set and $b$ in the boundary of $A$. Then we can separate $A$ and $b$, which means there exists $f \in \mathbb{R}^n$ such that $f\cdot x \ge f \cdot b$ for all $x \in A$.
I also know that if $A$ and $B$ are two disjoint convex sets. Then we can separate them (just apply the above result for the convex set $A - B$ and the point $0$).
My question is: If $A$ and $B$ are two convex sets with disjoint interiors (by interior, I mean topology interior), can we separate $A$ and $B$?
I think that this is true. My approach is just take a hyperplane separate $B$ and the interior of $A$ (they are disjoint), then prove that this hyperplane also separates $A$ and $B$. Which is: Let $f \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that $f \cdot a \ge \alpha \ge f \cdot b$ for all $a \in \operatorname{Int}A$, $b \in B$. But I stuck with proving that $f\cdot a \ge \alpha$ for all $a\in A$.
This is true if $\overline{\operatorname{Int}A} = \overline{A}$. But is this true for any convex set $A \in \mathbb{R}^n$?
Thanks very much for any help!