Is the fucntion
$$ f(x) = \begin{cases} x\sin(\frac1x) & \text{for }x\ne0, \\ 0 & \text{for }x=0. \end{cases} $$ differentiable at $x=0$?
Is the fucntion
$$ f(x) = \begin{cases} x\sin(\frac1x) & \text{for }x\ne0, \\ 0 & \text{for }x=0. \end{cases} $$ differentiable at $x=0$?
Hint
The function $x\mapsto \sin\left(\frac1x\right)$ doesn't have a limit at $0$ by considering the sequence $\left(\frac{1}{\frac\pi2+n\pi}\right)$
No: By defination of derivatives;
$$f'(0)=lim_{h\to 0}\dfrac{f(h)-f(0)}{h-0}$$ $$=lim_{h\to 0}\dfrac{f(h)}{h}$$ $$=lim_{h\to 0}\dfrac{hsin(1/h)}{h}=lim_{h\to 0}sin(\dfrac 1 h)$$
It is enough to show that $lim_{x\to \infty}sin(x)$ does not exist.
if $x_n=\pi n$ for $n\in \mathbb N$, $lim_{n\to \infty}sin(x_n)=0$
if $x_n=(\pi/2)(4n-1)$, $lim_{n\to \infty}sin(x_n)=1$
Thus, $lim_{x\to \infty}sin(x)$ does not exist.