In non-Hausdorff topology it is standard to define the Borel algebra of a topological space $X$ as the $\sigma$-algebra generated by the open subsets and the compact saturated subsets. Recall that a subset is saturated if it is an intersection of open subsets, and that compact saturated subsets play the role of compact subsets when the space $X$ is not $T_1$ (which is typically the case for a partially ordered set equipped with the Scott topology for instance).
In this situation, for a continuous function $f : X \to Y$ between topological spaces, is $f$ necessarily measurable?
This question is equivalent to the following. If we write $\uparrow y$ for the intersection of all open subsets containing $y$, which happens to be compact saturated, is it true that $f^{-1}(\uparrow y)$ is measurable for all $y \in Y$?
Thank you very much for your help. Paul
Edit: this question has now been migrated to MathOverflow, see here.