I tried to search for a few minutes but I didn't find this question so I hope it's not a duplicate.
So I want to show that $(e^x)' = e^x$. To do that, I must proof that the limit:
$$\lim_{h\to0}\frac{f(x+h) - f(x)}{h} = \lim_{h\to0}\frac{e^{x+h} - e^x}{h}$$
exists and equals to $e^x$.
So I have:
$$\frac{e^{x+h} - e^x}{h} = \frac{e^x \cdot e^h - e^x}{h} = e^x \bigg(\frac{e^h - 1}{h}\bigg) \\ e^h - 1 = z \implies e^h = 1+z >0 \implies h = \ln(1+z)$$
Because of the continuity of the $\ln$ and $e^x$ functions, we have:
$$h\to 0 \iff e^h \to 1 \implies z\to0 \\
z > 0 \implies \frac{1}{z} \to +\infty \\
z < 0 \implies \frac{1}{z} \to -\infty \\
\frac{e^h - 1}{h} = \frac{z}{\ln(1+z)} = \frac{1}{\frac{1}{z}\ln(1+z)} = \bigg[ y = \frac{1}{z} \bigg] = \frac{1}{y\ln(1+\frac{1}{y})} = \frac{1}{\ln(1+\frac{1}{y})^y} \\
h \to 0 \implies |y| \to +\infty \implies \bigg(1+\frac{1}{y}\bigg)^y \to e \implies \\
\lim_{h\to0}\frac{e^h - 1}{h} = \frac{1}{\ln e} = 1
\implies (e^x)' = e^x \cdot 1 = e^x$$
But how do I prove that $\lim_{\pm\infty}(1 + \frac{1}{x})^x = e$ ?
We defined $e$ like this: $$\lim_{n\to\infty} \bigg(1 + \frac{1}{n}\bigg)^n = e \space \,, \space n\in\mathbb{N}$$
I thought of the sandwich theorem:
$\forall x \geq 1 \,, x\in\mathbb{R} \,, \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ and $\lfloor x \rfloor , \lfloor x \rfloor + 1 \in \mathbb{N} $ and if I denote $\mathbb{N} \ni n = \lfloor x \rfloor$ I have: $$ \bigg(1 + \frac{1}{n+1}\bigg)^n \leq \bigg(1 + \frac{1}{x}\bigg)^x \leq \bigg(1 + \frac{1}{n}\bigg)^{n+1} \\ \lim_{n\to+\infty}\bigg(1 + \frac{1}{n+1}\bigg)^n = \frac{\lim_{n\to+\infty}\bigg(1 + \frac{1}{n+1}\bigg)^{n+1}}{\lim_{n\to+\infty}\bigg(1 + \frac{1}{n+1}\bigg)} = \frac{e}{1+0} = e \\ \lim_{n\to+\infty}\bigg(1 + \frac{1}{n}\bigg)^{n+1} = \lim_{n\to+\infty}\bigg(1 + \frac{1}{n}\bigg)^n \cdot \lim_{n\to+\infty}\bigg(1 + \frac{1}{n}\bigg) = e \cdot (1 + 0) = e$$
and now I could apply the theorem but then again, how do I show that this: $\bigg(1 + \frac{1}{n+1}\bigg)^n \leq \bigg(1 + \frac{1}{x}\bigg)^x \leq \bigg(1 + \frac{1}{n}\bigg)^{n+1}$ is true? I mean, I can say that (left side): $$ n+1 > x \implies \frac{1}{n+1} < \frac{1}{x} \implies 1 + \frac{1}{n+1} < 1 + \frac{1}{x} \\ \forall y\in\mathbb{R_+} \space n \leq x \implies y^n \leq y^x \\ \implies \bigg(1 + \frac{1}{n+1}\bigg)^n \leq \bigg(1 + \frac{1}{x}\bigg)^x$$ and by analogy the right side but is this a proof in terms of limits?
and that's just $+\infty$ for $x \geq 1$, what do I do for $-\infty$ ?
For $x\in\langle 0, 1\rangle$, a substitution $y = \frac{1}{x}$ gives me: $$\lim_{y\to 0}\bigg(1 + y\bigg)^\frac{1}{y}$$
I'll stop here to see if I'm on the right track, any hints, suggestions, edits, comments and answers are welcome!