Let two subspaces of $V=\mathbb{R}^4$:
$$w1 = \left\{ {\left( {\matrix{
1 \cr
1 \cr
1 \cr
1 \cr
} } \right),\left( {\matrix{
1 \cr
0 \cr
2 \cr
0 \cr
} } \right),\left( {\matrix{
0 \cr
2 \cr
1 \cr
1 \cr
} } \right)} \right\},w2 = \left\{ {\left( {\matrix{
1 \cr
1 \cr
1 \cr
1 \cr
} } \right),\left( {\matrix{
3 \cr
2 \cr
3 \cr
2 \cr
} } \right),\left( {\matrix{
2 \cr
{ - 1} \cr
2 \cr
0 \cr
} } \right)} \right\}$$
I row-reduced them and compared the generalized form (because those vectors are in $w_1 \cap w_2$:
$$\left( {\matrix{ {{\alpha _1}} \cr {{\alpha _1} + {\alpha _2}} \cr { - 2{\alpha _2} + 5{\alpha _3}} \cr {{\alpha _1} + {\alpha _2} + {\alpha _3}} \cr } } \right) = \left( {\matrix{ {{\beta _1}} \cr {{\beta _1} + {\beta _2}} \cr {{\beta _1}} \cr {{\beta _1} + {\beta _2} + {\beta _3}} \cr } } \right)$$
What action should I take from here to find the basis of $w_1 \cap w_2$?
Thanks.