Hint $\ \ \begin{eqnarray} {\rm mod}\ 5\!:\ \ \ 2^4\equiv1\,\Rightarrow\, \color{#0a0}{2^{20}}\equiv 1\\ {\rm mod}\ 11\!:\ 2^{10}\equiv1\,\Rightarrow\, \color{#0a0}{2^{20}}\equiv 1\end{eqnarray}\,\color{#c00}\Rightarrow\, {\rm mod}\ 55\!:\ \color{#0a0}{2^{\large 20}}\equiv 1\,\Rightarrow\, 2^{\large 20q+r}\equiv (\color{#0a0}{2^{\large 20}})^{\large q} 2^{\large r}\equiv 2^{\large r}$
where $(\color{#c00}\Rightarrow)$ follows by CRT, $ $ or by $\,5,11\mid 2^{20}\!-1\,\Rightarrow\, 5\cdot 11\mid 2^{20}\!-1,\,$ by $\,{\rm lcm}(5,11) = 5\cdot 11.$
Hence $\ {\rm mod}\ 55\!:\ 4^{\large 1002} = 2^{\large 2004} = 2^{\large 20\cdot 100+4}\equiv 2^{\large 4}$