I am trying to show that$$\displaystyle \int_0^\infty \frac {\cos {\pi x}} {e^{2\pi \sqrt x} - 1} \mathrm d x = \dfrac {2 - \sqrt 2} {8}$$
I have verified this numerically on Mathematica.
I have tried substituting $u=2\pi\sqrt x$ then using the cosine Maclaurin series and then the $\zeta \left({s}\right) \Gamma \left({s}\right)$ integral formula but this doesn't work because interchanging the sum and the integral isn't valid, and results in a divergent series.
I am guessing it is easy with complex analysis, but I am looking for an elementary way if possible.