First, express the sum throuh hypergeometric functions.
\begin{align}
& \sum_{m = 0}^l \frac{ {k + m \choose k}} {{l + 2k + 2 + m \choose {2k + 2}}} = \frac{(2k+2)!}{k!}\sum_{m = 0}^l\frac{(k+m)!(l+m)!}{m!(l+2k+2+m)!}=\\
&\frac{(2k+2)!}{k!} \left(\sum_{m = 0}^\infty \frac{(k+m)!(l+m)!}{m!(l+2k+2+m)!}-\sum_{m = l+1}^\infty\frac{(k+m)!(l+m)!}{m!(l+2k+2+m)!}\right).
\end{align}
Using Pochhammer symbol $(x)_n=x(x+1) ... (x+n-1)$ one obtains
$$
\sum_{m = 0}^\infty \frac{(k+m)!(l+m)!}{m!(l+2k+2+m)!}=\frac{k!l!}{(l+2k+2)!}\sum_{m = 0}^\infty \frac{(k+1)_m(l+1)_m}{m!(l+2k+3)_m}=\\
\frac{k!l!}{(l+2k+2)!} \phantom{}_2F_1\left({\textstyle k+1,l+1 \atop \textstyle l+2k+3}\,;1\right),
$$
$$
\sum_{m = l+1}^\infty\frac{(k+m)!(l+m)!}{m!(l+2k+2+m)!}=\frac{(k+l+1)!(2l+1)!}{(l+1)!(2l+2k+3)!}\sum_{m = 0}^\infty\frac{(k+l+2)_m(2l+2)_m}{(l+2)_m(2l+2k+4)_m}=\\
\frac{(k+l+1)!(2l+1)!}{(l+1)!(2l+2k+3)!} \phantom{}_3F_2\left({\textstyle k+l+2,2l+2,1 \atop \textstyle l+2,2l+2k+4}\,;1\right).
$$
Due to Gauss' theorem
$$
\phantom{}_2F_1\left({\textstyle k+1,l+1 \atop \textstyle l+2k+3}\,;1\right)=\frac{(l+2k+2)!k!}{(2k+1)!(l+k+1)!}.
$$
The second series can be summed using Watson's theorem
by substituting $c=k+l+2,\ a=1, \ b=2l+2$ and simplifications:
$$
\phantom{}_3F_2\left({\textstyle k+l+2,2l+2,1 \atop \textstyle l+2,2l+2k+4}\,;1\right)=\frac{(l+1)!k!(2k+2l+4)!(l+1)!(k+1)!}{(k+l+1)!(k+l+2)!(2l+2)!(2k+2)!}.
$$
Finally substituting these values for hypergeometric functions and simplifications one obtains
$$
\sum_{m = 0}^l \frac{ {k + m \choose k}} {{l + 2k + 2 + m \choose {2k + 2}}}=\frac{2}{{k + l + 1 \choose l}}-\frac{1}{{k + l + 1 \choose l}}=\frac{1}{{k + l + 1 \choose l}}.
$$