Hint: Recall that if $X_1,X_2,...,X_n$ are independent and identically distributed as $\chi_{1}^{2}\,$, then $$\sum_{i=1}^{n} X_{i} \sim \chi_{n}^{2}$$ and that if $Z \sim N(0,1)\,$, then $$Z^2 \sim \chi_{1}^{2} \,\,.$$
Additional hint/spoiler: By the above, for independent $X,Y \sim \chi_{1}^{2}$ , it follows that $X+Y \sim \chi_2^2 \,.$ It can be shown that $X+Y \equiv W$ for $W \sim \text{Exp}(\frac{1}{2})$. You should verify this and then you are basically finished. To do this, prove that $X \sim \chi_n^2$ has density given by
$$f(x \mid n) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2} \,\,\,\,\text{for $x>0$}\,.$$
Then, see that the density of $X \sim \chi_2^2$ is $$f(x \mid 2) = \frac{1}{2}e^{-\frac{1}{2}x} \,\,\,\,\text{for $x>0$}\,,$$
and this is the density of a random variable from an exponential distribution with parameter $\frac{1}{2}$. $$$$
Another relevant derivation: Suppose $X$ is a random variable and $Z = aX$ for some $a \in \mathbb{R} \backslash \{0\}$. Then the cumulative distribution function of $Z$ is given by $$F_Z(z) =\mathbb{P}(Z \leq z)=\mathbb{P}(aX \leq z)=\mathbb{P}\left(X\leq \frac{z}{a}\right)=F_X\left(\frac{z}{a}\right)\,\,,$$
where $F_X$ is the cumulative distribution function of $X$. Now, we derive the density function of $Z$, which we will denote $f_Z$, in the case that $a>0$ (this is the only case that applies here since $\sigma^2>0$): $$f_Z(z)=\frac{\text{d}}{\text{d}z}F_Z(z)=\frac{\text{d}}{\text{d}z}F_X\left(\frac{z}{a}\right)=\frac{1}{a}f_X\left(\frac{z}{a}\right) \,,$$
where $f_X$ is the density function of $X$.
Final hint: The above hints are in the order of usage.
$$$$
The following is a solution based on the above hints for future readers' benefit. Notice that we can standardize $X_1$ and $X_2$, so that $$\frac{X_i - 0}{\sigma} = \frac{X_i}{\sigma} \sim N(0,1) \,\,\,\,\,\text{for} \,\,i=1,2\,\,.$$ It follows that $$\left(\frac{X_i}{\sigma}\right)^2 \sim \chi_1^2 \,\,\,\,\,\text{for}\,\,i=1,2\,\,,$$
so that $$\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2=\frac{1}{\sigma^2}(X_1^2 + X_2^2) \sim \chi_2^2\,\,.$$
Also, it is not difficult to verify that a $\chi_2^2$ random variable is equivalent in distribution to an $\text{Exp}(\frac{1}{2})$ random variable, so $$\frac{1}{\sigma^2}(X_1^2 + X_2^2) \sim \text{Exp}\left(\frac{1}{2}\right)\,.$$
Now, let $X = \frac{1}{\sigma^2}(X_1^2 + X_2^2)$ and $a=\sigma^2>0$, so that $Z=aX=X_1^2 + X_2^2$, and apply the last hint. We know that the density function of $X$ is given by
$$f_X(x)=\frac{1}{2}e^{-\frac{1}{2}x},$$
and it follows that the density function of $Z$ is $$f_Z(z)= \frac{1}{\sigma^2}f_X\left(\frac{z}{\sigma^2}\right)=\frac{1}{2\sigma^2}e^{-\frac{1}{2\sigma^2}z} \,\,.$$
We recognize this as the density for a random variable from an exponential distribution with parameter $\frac{1}{2\sigma^2}$. In other words, $$X_1^2 + X_2^2 \sim \text{Exp}\left(\frac{1}{2\sigma^2}\right)\,\,.$$
@DilipSarwate @FelixMarin @user3001408, you might be interested in this derivation.