Having this:
$\int x\sqrt{1-x^2}dx$
Substitution:
$t = 1-x^2$
$dt = -2xdx => dx=\frac{-2x}{dt}$
So:
$$\int x\sqrt{1-x^2}dx = -\int x t^\frac{1}{2}\frac{2x}{dt} = -\int \frac{2x^2 t^\frac{1}{2}}{dt} = $$
...but here I stuck... I've tried $-4x\frac{t^\frac{-1}{2}}{\frac{-1}{2}} + c$ but it doesn't match correct result... why did I screw here?