$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\prod_{k = 1}^{N}\pars{1 + {1 \over k^{5}}} & =
\prod_{k = 1}^{N}\pars{k^{5} + 1 \over k^{5}} =
{\prod_{k = 1}^{N}\pars{k - \bar{r}_{2}}\pars{k - \bar{r}_{1}}\pars{k + 1} \pars{k - r_{1}}\pars{k - r_{2}} \over \pars{N!}^{5}}
\end{align}
where $\ds{r_{1} = \exp\pars{{\pi \over 5}\,\ic}}$ and
$\ds{r_{2} = \exp\pars{{3\pi \over 5}\,\ic}}$.
\begin{align}
\prod_{k = 1}^{N}\pars{1 + {1 \over k^{5}}} & =
{\pars{N + 1}! \over \pars{N!}^{5}}\,
\verts{\prod_{k = 1}^{N}\pars{k - \bar{r}_{2}}}^{\,2}
\verts{\prod_{k = 1}^{N}\pars{k - \bar{r}_{1}}}^{\,2}
\\[5mm] & =
{N + 1 \over \pars{N!}^{4}}\,
\verts{\pars{1 - r_{2}}^{\overline{N}}}^{\,2}
\verts{\pars{1 - r_{1}}^{\overline{N}}}^{\,2}
\\[5mm] & =
{N + 1 \over
\verts{\Gamma\pars{1 - r_{1}}}^{\,2}\verts{\Gamma\pars{1 - r_{2}}}^{\,2}}\,
\verts{\pars{N - r_{2}}! \over N!}^{\,2}\verts{\pars{N - r_{1}}! \over N!}^{\,2}
\label{1}\tag{1}
\end{align}
Moreover,
\begin{align}
\verts{\pars{N - r}! \over N!}^{\,2}
& \,\,\,\stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\,
\verts{\root{2\pi}\pars{N - r}^{N - r + 1/2}\expo{-\pars{N - r}} \over
\root{2\pi}N^{N + 1/2}\expo{-N}}^{\,2} =
\verts{N^{N - r + 1/2}\pars{1 - r/N}^{N - r + 1/2}\expo{r} \over
N^{N + 1/2}}^{\,2}
\\[5mm] & \,\,\,\stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\,
\verts{N^{-r}}^{\,2} =
\verts{\exp\pars{-r\ln\pars{N}}}^{\,2} =
\exp\pars{-2\,\Re\pars{r}\ln\pars{N}} = {1 \over N^{2\,\Re\pars{r}}}
\end{align}
Note that
$\ds{{1 \over N^{2\,\Re\pars{r_{1}}}}\,{1 \over N^{2\,\Re\pars{r_{2}}}} =
{1 \over N}}$ such that $\ds{\pars{~\mbox{see expression}\ \eqref{1}~}}$
$$
\bbx{\prod_{k = 1}^{\infty}\pars{1 + {1 \over k^{5}}} =
{1 \over
\verts{\Gamma\pars{1 - r_{1}}}^{\,2}\verts{\Gamma\pars{1 - r_{2}}}^{\,2}}}
\,,\qquad
\left\{\begin{array}{rcl}
\ds{r_{1}} & \ds{=} & \ds{\exp\pars{{\pi \over 5}\,\ic}}
\\[2mm]
\ds{r_{2}} & \ds{=} & \ds{\exp\pars{{3\pi \over 5}\,\ic}}
\end{array}\right.
$$