Show $$\langle f,g \rangle := \frac 1 {2\pi} \int^{\pi}_{-\pi} f(x) \overline {g(x)} dx$$
define an inner product on the complex vector space of continuous functions.
I must establish $\langle f,g \rangle = \overline {\langle g,f \rangle}$, however I get to the point $$\langle g,f \rangle := \frac 1 {2\pi} \int^{\pi}_{-\pi} g(x) \overline {f(x)} dx =\frac 1 {2\pi} \int^{\pi}_{-\pi} g(x) \overline {f(x)} dx = \frac 1 {2\pi} \int^{\pi}_{-\pi} \overline {f(x)} g(x) dx=\int^{\pi}_{-\pi} \overline {f(x) \overline {g(x)}} dx$$, and I want to take the conjugate "out" the integral, but how ?
Also, how can I verify that $\langle f,f\rangle = 0 \iff f = 0$ ?