0

$$x+2y-2z+2s-t=0$$

$$x+2y-z+3s-2t=0$$

$$2x+4y-7z+s+t=0$$

I need to find the basis and dimensions. I'm not sure how to do it. The book I have doesn't have a very good example.

I end up with: $$ \left( \begin{array}{ccc} 1 & 2 & 0 & 4 & -3 \\ 0 & 0 &1 & 1 &-1 \\ 0 &0& 0&0 &0\\ \end{array} \right)$$

I got this as my row reduced form, the here I'm not sure where to go to get the basis. I get that the dimension will be three

Here is my work:

R2-R1 = 0 0 1 1 -1 0

R3-R1 = 0 0 -3 -3 3 0

R3/3 = 0 0 -1 -1 1 0

-R3-R2 = 0 0 0 0 0 0

R1-R2 = 1 2 0 4 -3 0

which in turn gives me $$ \left( \begin{array}{ccc} 1 & 2 & 0 & 4 & -3 \\ 0 & 0 &1 & 1 &-1 \\ 0 &0& 0&0 &0\\ \end{array} \right)$$

kevorski
  • 113

1 Answers1

1

$$\begin{pmatrix}1&2&-2&2&-1\\ 1&2&-1&3&-2\\ 2&4&-7&1&\;\;1\end{pmatrix}\stackrel{\begin{cases}R_2-R_1\\R_3-2R_1\end{cases}}\longrightarrow\begin{pmatrix}1&2&-2&\;\;2&-1\\ 0&0&\;\;\,1&\;\;1&-1\\ 0&0&-3&-3&\;\;3\end{pmatrix}$$

Clearly, the third row becomes all zeros in the next step (do it), so...etc.

DonAntonio
  • 211,718
  • 17
  • 136
  • 287