This is further to the questions discussed in a previous post
Here is an example of what I mean: Suppose that $C$ is a closed path in the plane and consider the line integral of $xy\,dx+x^2\,dy$ over $C$. Note that this can be written as $$\oint_C x\,d(xy)$$
Question: If we let $A$ denote the starting and ending point of the path, is it valid to use "Integration by Parts" to write $$\oint_C x\,d(xy)=x\cdot xy\bigg|_A^A -\oint_C xy\cdot dx=-\oint_C xy\cdot dx$$ Note that the claim is valid, as the sum of the two integrands is $2xy\,dx+x^2\,dy$ which is conservative, being the gradient of $f(x,y)=x^2y$. Therefore the sum of the two integrals in the last equation is zero, hence they are negatives of each other. (And obviously, the second integral will usually be more desirable to compute than the first.)
But what does this mean, and why is it true?
More generally, I think it would insightful to have a discussion about differentials in the context of integration and how/why the Leibniz notation can or cannot be used to intuitively understand calculations such as the above.
And how can we interpret differentials of general quantities which may involve several variables, as opposed to just single ones? Does the expression $d(xy)$ only make sense in the context of a path $C$, where we can view it as the change in $g(x,y)=xy$ over small segments of that curve, or does it admit a broader interpretation?