Let $f(x)= x\sin({1\over x})\forall x>0$
Then evaluate
$\lim_{x\to\infty} x\sin({1\over x})$
My approach: $\sin({1\over x})$ is periodic function and $x$ denotes its amplitude. So I thought $f$ is an unbounded function and hence will not have any feasible value for $x\to\infty$