Hint $\ $ Reduce to factoring a polynomial that is $\,\rm\color{#c00}{monic}\,$ (lead coeff $=1)$ as follows:
$$\quad\ \ \begin{eqnarray}
f &\,=\,& \ \ 3\ x^2-\ 5\ x\ +\ 2\\
\Rightarrow\ 3f &\,=\,& (3x)^2\! -5(3x)+6\\
&\,=\,& \ \ \ \color{#c00}{X^2- 5\ X\,\ +\ 6},\,\ \ X\, =\, 3x\\
&\,=\,& \ \ (X-2)\ (X-\,3)\\
&\,=\,& \ (3x-2)\,(3x-3)\\
\Rightarrow\ f\,=\, 3^{-1}(3f) &\,=\,& \ (3x- 2)\ (\,x\,-1)\\
\end{eqnarray}$$
Remark $\ $ If we denote our factoring algorithm by $\,\cal F,\,$ then the above transformation is simply
$$\cal F f\, = a^{-1}\cal F\, a\,f\quad\,$$
Thus we've transformed by $ $ conjugation $\,\ \cal F = a^{-1} \cal F\, a\ \,$ the problem of factoring non-monic polynomials into the simpler problem of factoring monic polynomials.
This is sometimes called the AC method. It works for higher degree polynomials too. As above, we can reduce the problem of factoring a non-monic polynomial to that of factoring a monic polynomial by scaling by a $ $ power of the lead coefficient $\rm\:a\:$ then changing variables: $\rm\ X = a\:x$
$$\begin{eqnarray} \rm\: a\:f(x)\:\! \,=\,\:\! a\:(a\:x^2 + b\:x + c) &\,=\,&\rm\: X^2 + b\:X + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\smash[t]{\overbrace{ac}^{\rm\qquad\ \ \ \ \ {\bf AC-method}}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! =\, g(X),\ \ \ X = a\:x \\
\\
\rm\: a^{n-1}(a\:x^n\! + b\:x^{n-1}\!+\cdots+d\:x + c) &\,=\,&\rm\: X^n\! + b\:X^{n-1}\!+\cdots+a^{n-2}d\:X + a^{n-1}c
\end{eqnarray}$$
After factoring the monic $\rm\,g(X)\, =\, a^{n-1}f(x),\,$ we are guaranteed that the transformation reverses to yield a factorization of $\rm\:f,\ $ since $\rm\ a^{n-1}$ must divide into the factors of $\rm\ g\ $ by Gauss' Lemma, i.e. primes $\,p\in\rm\mathbb Z\,$ remain prime in $\rm\,\mathbb Z[X],\,$ so $\rm\ p\ |\ g_1(x)\:g_2(x)\,$ $\Rightarrow$ $\,\rm\:p\:|\:g_1(x)\:$ or $\rm\:p\:|\:g_2(x).$
This method also works for multivariate polynomial factorization, e.g. it applies to this question.
For more on the ring-theoretic concepts at the heart of this see this answer.