$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
With
$\ds{t \equiv {1 \over 1 + x^{n}}\quad\imp\quad x = \pars{{1 \over t} - 1}^{1/n}}$:
\begin{align}
&\color{#00f}{\large\lim_{n \to \infty}\int_{0}^{\infty}{1 \over 1 + x^{n}}\,\dd x}
=\lim_{n \to \infty}\int_{1}^{0}t\,{1 \over n}\pars{{1 \over t} - 1}^{1/n - 1}
\pars{-\,{1 \over t^{2}}}\,\dd t
\\[3mm]&=
\lim_{n \to \infty}\bracks{%
{1 \over n}\int_{0}^{1}t^{-1/n}\pars{1 - t}^{1/n - 1}\,\dd t}
=\lim_{n \to \infty}\bracks{%
{1 \over n}\,{\Gamma\pars{1 - 1/n}\Gamma\pars{1/n} \over \Gamma\pars{1}}}
\\[3mm]&=\lim_{n \to \infty}\bracks{\pi/n \over\sin\pars{\pi/n}}
=\color{#00f}{\LARGE 1}
\end{align}
where we used well known properties of the Beta $\ds{{\rm B}\pars{x,y}}$ and Gamma $\ds{\Gamma\pars{z}}$ functions.